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Abstract: Multi-task “vision-language-action” (VLA) models have recently1

demonstrated increasing promise as generalist foundation models for robotics,2

achieving non-trivial performance out of the box on new tasks in new environments.3

However, for such models to be truly useful, an end user must have easy means to4

teach them to improve. For language and vision models, the emergent ability to5

perform in-context learning (ICL) has proven to be a versatile and highly useful6

interface to easily teach new tasks with no parameter finetuning. Unfortunately,7

VLAs pre-trained with imitation learning objectives do not naturally acquire ICL8

abilities. In this paper, we demonstrate that, with the right finetuning recipe and a9

small robot demonstration dataset, it is possible to inject in-context adaptability10

post hoc into such a VLA. After retraining for in-context learning (RICL), our sys-11

tem permits an end user to provide a small number (10-20) of demonstrations for12

a new task. RICL then fetches the most relevant portions of those demonstrations13

into the VLA context to exploit ICL, performing the new task and boosting task14

performance. We apply RICL to inject ICL into the π0-FAST VLA, and show that it15

permits large in-context improvements for a variety of new manipulation tasks with16

only 20 demonstrations per task, without any parameter updates. When parameter17

updates on the target task demonstrations is possible, RICL finetuning further boosts18

performance. We release code and model weights for RICL-π0-FAST alongside19

the paper to enable, for the first time, a simple in-context learning interface for new20

manipulation tasks1.21

Keywords: Vision-Language-Action (VLA) models, In-Context Learning (ICL),22

Retrieval-Augmenetd Generation (RAG)23

1 Introduction24

Robot learning is undergoing a transformative moment with the emergence of the first generation of25

general-purpose Vision-Language-Action (VLA) models, capable of performing a wide spectrum of26

robotic tasks — a development with profound practical implications. Such models [1, 2, 3, 4, 5, 6, 7, 8]27

could address persistent challenges in robotics, including data scarcity, robustness, and generalization.28

A natural point of comparison for these VLAs is large language models (LLMs). One important29

factor in the widespread adoption of LLMs today is that they appear to be able to quickly learn new30

tasks, simply through providing a few examples as “context” alongside the query, with no parameter31

tuning. This capability, called in-context learning (ICL) [9], emerges naturally in LLMs pre-trained32

for next-token prediction, due to the nature of web text data. Even better, one need not even manually33

provide these few examples. Instead, a retrieval mechanism could automatically fetch the most34

relevant data from a large corpus and place them into the LLM context. This retrieval-augmented35

generation (RAG) mechanism is widely adopted as a versatile interface to improve a base LLM [10].36

1 Website: https://ricl-vla.github.io
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(a) Task: "pick up the poke ball and put it in the tray". π0-FAST-DROID [L] picks up the distractor (duck) instead (language grounding issue).
RICL-π0-FAST-DROID [R] actually moves the unseen object (pokeball) with only RAG and ICL.

(b) Task: "pick up the bagel and put it in the toaster". π0-FAST-DROID [L] aimlessly wanders and cannot figure out the grasp or motion
(adaptation issue). RICL-π0-FAST-DROID [R] almost completes the task (only with RAG and ICL) but drops the unseen object (bagel) at the
end of the novel motion–a combination of an unfamiliar grasp at its rim, its unique initial vertical position, and the twist-and-lift motion.

(c) Task: "move the idli plate to the sink". In π0-FAST-DROID’s best test rollout shown here, it still struggles with the grasp and motion for
this novel object (adaptation issue) or moves the apple (distractor) instead (language grounding issue). RICL-π0-FAST-DROID can perform the
novel motion (gripper in depressions) on the unseen object (idli plate) in this new scene with new camera positions/orientations and with lighting
changes (which is different from the table where the priming demonstrations were collected).

(d) Task: "use the squeegee to clean the counter". π0-FAST-DROID oscillates without success. It gets close, but it cannot figure out the grasp
or the motion (adaptation issue). RICL-π0-FAST-DROID adapts to novel object (squeegee) and motion (part lifting, part dragging) in the new
scene. Notice the pellets dropping into sink showing contact with the surface.

(e) Task: "push the lever on the toaster". π0-FAST-DROID [L] aimlessly wanders. It cannot figure out the precise location or the grasp
(adaptation to a variant of training object issue). RICL-π0-FAST-DROID [R] completes the precise task, only with RAG and ICL, and with
elicited latent actions not in the retrieval data (more information in Section 6). This long-tail task appears infrequently in the DROID dataset.

(f) Task: "open the door of the bottom shelf". π0-FAST-DROID [L] aimlessly wanders. It cannot figure out the motion to adjust or avoid the
top door acting as obstacle (adaptation issue). RICL-π0-FAST-DROID [R] completes the task, with this variant of a seen object (this particular
shelf) and novel motion (precise door opening adjusting for the obtructing top shelf), only with RAG+ICL. This is also a long-tail task.

Figure 1: Qualitative comparison between π0-FAST-DROID [L] and RICL-π0-FAST-DROID [R], with 20
task specific demonstrations for RAG and ICL, on new tasks, including novel objects, motions, and scenes.
Additional comparisons can be found in Figure 8 in Appendix D.

Unfortunately, VLAs are trained with imitation learning objectives on relatively narrow demonstration37

datasets. As one would expect, this does not naturally produce any in-context learning abilities. This38

means that “improving” a pre-trained VLA today means tuning its parameters on a new demonstration39

dataset [2]. To make it possible for an end user to easily improve a VLA with no parameter tuning,40

we ask the following question:41

How can we inject in-context learning abilities into a pre-trained VLA?42
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Once this is done, we should be able to painlessly boost the VLA’s performance on any task, including43

handling unseen objects, novel motions, and new scenes that don’t exist in the VLA training data.44

Our solution is to retrain for in-context learning (RICL, pronounced “rickle”). RICL borrows from45

prior recipes [11, 12] to train generalist models for in-context learning and RAG. In particular,46

while REGENT [12] trained generalist game-playing agents from scratch, RICL uses this approach47

to instead post-train an off-the-shelf VLA priming it to use its context effectively. The resulting48

RICL-VLA can improve the base VLA’s performance for any target tasks without a single gradient49

update, instead adapting purely through retrieval-augmentation and in-context learning, with only50

10-20 demonstrations in its retrieval buffer. We demonstrate this on various manipulation tasks51

depicted in Figure 1 where a state-of-the-art (SOTA) VLA fails but our RICL-VLA adapts simply via52

RAG and ICL. We further find that it is possible to get even better task performance by “finetuning53

like you pretrain” [13]: we optimize the RICL objective on the same demonstrations as used above54

for ICL, and get large performance boosts.55

2 Related Work56

Training VLAs and multi-task generalist agents: There has been a spate of work in recent years57

on training multi-task agents in simulated settings like games [14, 12, 15, 16, 17, 18] and in recent58

months on training VLAs for robotics [1, 2, 3, 4, 6, 7, 5, 8]. To our knowledge, there are only three59

prior attempts to train general agents with in-context learning (ICL) capabilities [16, 12, 18], none60

for general-purpose robotics. This is the focus of RICL: we show how to post-train a pre-trained VLA61

to effectively learn in-context.62

In-context learning for robotics: The in-context learning abilities of large language models (LLMs)63

and vision-language models (VLMs) have already been found to be very useful in robotics: with64

suitable representations (such as keypoints or code), these models can in-context learn imitation65

policies [19, 20, 21, 22] or value functions [23, 24]. But, using LLMs and VLMs requires these66

methods to run completely (or mostly) open-loop [19, 20, 21] and using only LLMs makes them lose67

significant visual information [19, 21]. Both these drawbacks affect their ability to adapt.68

3 Background on ICL, RAG, and π0 VLAs69

In-Context Learning (ICL) is the property of sequence to sequence models that allows them to70

predict an output (such as an action ât) for a new input (such as state st) given a few examples of71

input-output pairs in the context (such as state-action pairs {(s′, a′), (s′′, a′′), ...}). The input to the72

model is the concatenation of the context and the new input.73

Retrieval-Augmented Generation (RAG) refers to the strategy commonly used to help LLMs74

predict an answer for a query. This is achieved by obtaining the information necessary for the answer75

by searching through a dataset and then placing said information in the context of an LLM.76

Of the three methods for embodied agents mentioned in Section 2 that learn to in-context learn,77

MTT [16] and ICRT [18] place a few complete demonstrations in their context while REGENT78

[12] retrieves select states and actions (from the same few complete demonstrations) to place in its79

context. The RAG+ICL method employed by REGENT outperforms the former ICL method across80

held-out games and held-out simulated robotics tasks. REGENT demonstrates that combining the81

two i.e. retrieving specific examples to place into context from a demonstration dataset offers a82

computationally less intensive, higher performing alternative to directly placing demonstrations in83

context. We adopt this idea in RICL.84

π0-FAST [1] is a state-of-the-art auto regressive VLA model that takes images, language instruction,85

and proprioceptive state as input and predicts actions. It can be deployed (in a variety of scenes)86

zero-shot on robot embodiments that are a part of its training data and few-shot after finetuning on87

new robot embodiments. π0-FAST-DROID [1] is a VLA that was created by further finetuning88

π0-FAST on the large DROID dataset [25]. The DROID dataset was collected with the Franka89

DROID platform, shown in Figure 3, across many research labs (additional details in Appendix B).90
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Figure 2: Architecture of RICL-VLAs, specifically that of RICL-π0-FAST.

4 RICL and creating in-context learning capable RICL-VLAs91

This work aims to combine the best of both worlds from Section 3–i.e., it aims to quickly convert a92

VLA that can be generally deployed like π0-FAST-DROID into one that also has in-context adaptation93

capabilities like REGENT. Once an in-context learning capable VLA has been created, “teaching” it94

to improve its performance on a new task is as simple as downloading the model, collecting a few95

demonstrations, and providing them as a retrieval dataset. Then, the in-context learning capable VLA96

should instantly have much better success rates on this new task than the baseline VLA.97

Re-training for In-Context Learning (RICL): RICL enables the aforementioned conversion of a98

pre-trained VLA to a in-context learning capable-VLA (that we call a RICL-VLA). In RICL, a VLA99

is post-trained on sequences of query images/states and many images, states, actions, and action100

obtained from the retrieval demonstrations as depicted in Figure 2. The query information at time101

t consists of three images (top imaget, side imaget, wrist imaget), a language prompt describing102

the task, and proprioceptive state st. We use the term "query" following terminology from RAG for103

LLMs. The retrieved neighbors also consist of three images, the same text prompt, proprioceptive104

state, and action chunk (i.e. an array of actions over many time steps). The retrieved information is105

placed in the context with the closest neighbor (to the query) on the left and farther away neighbors106

towards the right. The closest neighbor’s images, states, and actions is represented with a single ′,107

the second closest with a double ′′ and so on (see Figure 2). This finetuning utilizes a few "priming"108

demonstrations. These demonstrations are called "priming" demonstrations since their role is to prime109

the VLA to use its context effectively. Further, as depicted in Figure 2, only the LLM is finetuned110

during RICL while the image encoder is kept frozen. RICL-VLAs perform retrieval by embedding111

only the top query image with an off-the-shelf DINO-v2 [26] image encoder and comparing it with112

the embeddings of top images of the demos in the retrieval buffer with an ℓ2 distance metric.113

Like REGENT [12], the predicted action ât involves a distance-weighted interpolation between the114

action tokens of the closest retrieved action a′ and the final output of the large language models. We115

refer to this as the action interpolation layer and depict it within the green box above the LLM in116

Figure 2. This distance corresponds to the distance between the DINO embeddings of the query117

top image and the closest retrieved top image. The action interpolation layer assumes a maximum118

number of action tokens numbering Nact and combines the one-hot encoding of each token of a′ with119

the corresponding token output by the LLM πθ(retrieved, query) as follows:120

πθ
RICL-VLA(retrieved, query) = e−λd one-hot(a′) + (1− e−λd)σ (πθ(retrieved, query)) (1)

where σ represents the Softmax function and d denotes the ℓ2 distance between the DINO embeddings121

of top imaget and its nearest neighbor top image′. The RICL-VLA performs the above interpolation122

for each of the Nact tokens. These tokens are then detokenized by the FAST tokenizer to obtain an123

action chunk that can be executed on the robot.124
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Unlike the process to train REGENT [12], RICL on the other hand, only predicts and minimizes the125

cross-entropy loss over the query (prompt, st) tuple and predicted action chunk during training126

whereas REGENT [12] predicted and minimized the loss over all retrieved and query actions.127

The RICL-VLA, after having been primed to use its context in RICL, can now be deployed on a target128

task, which can include unseen objects and novel motions, with just a few task-specific demonstrations129

for RAG and ICL, and without any further training on those demonstrations.130

Further finetuning of a RICL-VLA: If a RICL-VLA is further finetuned on those target task131

demonstration–that it was only retrieving from and throwing into its context previously–it can132

significantly improve its performance, outperforming a VLA directly vanilla finetuned on those133

unseen task demonstrations. This finetuning process on the few task-specific demonstrations is134

done exactly like RICL– i.e., a retrieval-augmented finetune of the RICL-VLA (which has the action135

interpolation layer) with the same objective of minimizing the cross-entropy loss over the query136

(prompt, st) tuple and predicted action chunk. At deployment, the finetuned RICL-VLA still retrieves137

from the same data that it is finetuned with, i.e. no extra data (hyperparameters in Appendix C).138

5 Experimental Setup139

Training (a.k.a., Priming) data for RICL: We collect 20 demonstrations with the Franka DROID140

platform (see Figure 3), randomizing the initial position of the primary object, in 20 pick and place141

tasks (total 400 demonstrations). The exact list of tasks, an image of all the objects used, and142

more details about the platform are in Appendix C. We perform RICL– starting from the weights143

of π0-FAST-DROID, fully finetuning its LLM, and keeping its image encoder frozen– with the144

hyperparameters detailed in Appendix C. We call the model obtained after three epochs of training as145

RICL-π0-FAST-DROID.146

Figure 3: [LEFT] Our Franka DROID setup, annotated.
[RIGHT] Franka DROID, including the top camera and
right camera, moved to a new scene (kitchen sink).

In each task, for each demonstration, and for147

each state in that demonstration, we use that148

state as the query and retrieve four neighbors149

from the other 19 demonstrations to create train-150

ing input sequences. In this way, we end up151

training the model in the same way we would152

deploy the model. We collect data as detailed153

above since such a dataset is not available.154

Evaluation tasks with unseen objects, novel155

motions, different scenes: We evaluate all156

methods on the following tasks, which involve a task-relevant unseen object and/or a completely157

novel motion in two different scenes (tabletop and kitchen sink). “Unseen” here means that these158

objects and motions are not in either the RICL priming data or the DROID data [25]. We checked159

the latter by searching over the DROID dataset’s language annotations (and some recordings when160

language was not adequate). First, we start with a simple task that primarily tests language grounding.161

• (pokeball) "pick up the pokeball and put it in the tray": has an unseen object (pokeball) with a162

couple of distractors on the table.163

Next, we test on simple tasks that test both language grounding and adaptation to novel motions.164

• (idliplate) "move the idli plate to the left": has an unseen object (idli plate) with a apple165

(distractor) sitting on the plate. It also requires the robot to do an unfamiliar grasp to move the166

uniquely shaped plate with depressions to the right.167

• (squeegee) "move the squeegee to the right and try to drag it": has an unseen object (squeegee).168

It also requires the robot to do a novel motion of slightly lifting the handle of the squeegee while169

keeping its rubber on the table to drag it across the table.170

We then test on versions of the above two simple tasks in a new scene (kitchen sink area) with new171

camera positions/orientations (no calibration necessary), new lighting, and new distractors.172
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• (sink-idliplate) "move the idli plate to the sink": all of the previous challenges & a new scene.173

• (sink-squeegee) "use the squeegee to clean the counter": all of the challenges of the previous174

task with pellets to be cleaned up on the counter in the new scene.175

We also test on the long-tail of the training task distribution. These tasks consist of variations of176

objects in the DROID dataset. These object classes appear infrequently in the dataset.177

• (toaster) "push the lever on the toaster": has a different version of an object (a particular toaster178

brand) in the DROID dataset. This task tests the long tail of the training task distribution. It also179

requires a precise placement and movement to push the lever down.180

• (door) "open the door of the bottom shelf": has a different version of an object (a particular shelf)181

in the DROID dataset. This task also is in the long tail. It requires a novel and precise motion that182

can handle the large top shelf acting as an obstacle when reaching the bottom door’s handle.183

Finally, we test on a longer horizon task that is a composition of many simple tasks.184

• (bagel) "pick up the bagel and put it in the toaster": has an unseen object (bagel). It also requires185

the robot to do a composite novel motion–an unfamiliar grasp on the edge of the bagel, the186

twist-and-lift motion, and placing in the slot.187

Retrieval data in evaluation tasks: In all the evaluation tasks, we collect 20 demonstrations,188

randomizing the initial position of the primary object, for RICL-π0-FAST-DROID to retrieve from189

and throw in its context to adapt to the task.190

Evaluation metrics and comprehensive randomization: We collect 10 test rollouts for all methods191

on all evaluation tasks with randomly chosen initial positions and orientations in each rollout. We192

set these intial positions and orientations all across the table. The distractors, if any, are kept193

approximately in the same region of the table but they are also not fixed in place. We calculate the194

success of the full tasks, in addition to tracking intermediate checkpoints for a better understanding195

of the progress of each method on each task.196

Baselines and ablations: We compare RICL-π0-FAST-DROID with vanilla π0-FAST-DROID on197

all tasks. We also compare with ’Retrieve and play’, a 1 nearest neighbor baseline from [12], which198

simply outputs the first retrieved action a′. We also compare with a trained-from-scratch Diffusion199

Policy baseline. We perform these two comparisons on the simpler evaluation tasks (pokeball,200

idliplate, squeegee). Upon observing their low success rates, we leave them out for the more201

complex tasks. In the tasks performed in a new scene (sink-idliplate, sink-squeegee), we aim202

to test RICL’s ability to retain π0’s helpful scene-generalization capabilities while adapting in-context203

to a new task and hence only test these two methods. We also ablate the number of demonstrations204

used by each method in the idliplate task.205

Further finetuning: We further finetune RICL-π0-FAST-DROID on each evaluation task on the 20206

demonstrations collected for retrieval. For comparison, we also further (vanilla) finetune π0-FAST-207

DROID on these same 20 demonstrations in each task.208

6 Experimental Evaluation209

Generalization to unseen objects and novel motions and new scenes: We plot the quantitative210

results across tasks and methods in Figure 4. We observe that RICL-π0-FAST-DROID outperforms211

π0-FAST-DROID, especially in earlier checkpoints of the task, but also in overall task success. In212

aggregate, across all evaluated tasks, π0-FAST-DROID obtains a complete task success rate of 2.5%213

and a checkpoint completion rate of up to 21.25%. On the other hand, RICL-π0-FAST-DROID obtains214

a significantly improved complete task success rate of 31.25% and a checkpoint completion rate of215

up to 83.75%.216

We particularly note that RICL-π0-FAST-DROID has significantly improved language grounding217

to move towards the unseen objects just based on contextual information. More importantly, RICL-218
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Figure 4: Success rates of 10 test rollouts from various methods across various tasks represented by stacked bar
plots. The lowest bar (dark blue) in each stacked column represents full task success rate, and other bars are the
success rates for reaching earlier waypoints. Gray regions represent the fraction of runs that did not even reach
the first waypoint for the task. We note that π0 refers to π0-FAST-DROID and RICL to RICL-π0-FAST-DROID
in the plots. We also plot the performance of various methods vs the number of demonstration in the idliplate
task on the bottom right.

π0-FAST-DROID also overcomes the adaptation issue faced by π0-FAST-DROID. Where π0-FAST-219

DROID struggles with grasps and motions, RICL-π0-FAST-DROID demonstrates the ability to220

infer novel grasps and motions from its context as evidenced in six tasks (both squeegee tasks,221

sink-idliplate, bagel, toaster, and door). We plot the qualitative results depicting key test222

rollouts and behaviors of π0-FAST-DROID and RICL-π0-FAST-DROID in Figure 1 and Figure 8. We223

also provide side-by-side comparisons and detailed explanations of rollouts in the same Figures.224

Unexpectedly, we observe in some tasks that RICL-π0-FAST-DROID seems to predict and execute225

action sequences that are not like the motions in the retrieval dataset. For example, in idliplate,226

RICL-π0-FAST-DROID moves to the left of the idli plate, closes its gripper and pushes the plate to227

the right. But, all 20 demonstrations in the retrieval buffer were collected with the motion of dipping228

the gripper into the depressions and moving the plate to the right. Hence, RICL-π0-FAST-DROID229

has seemingly elicited latent actions or knowledge to accomplish this task (also seen in toaster).230

Significantly improved performance after further finetuning the RICL-VLA: We observe a231

significant improvement in performance after further finetuning RICL-π0-FAST-DROID on each232

task’s 20 demonstrations. In aggregate, across all evaluated tasks, π0-FAST-DROID-finetuned233

obtains a complete task success rate of 31.67%, while RICL-π0-FAST-DROID-finetuned obtains a234

complete task success rate of 61.67%. In fact, we not only see that the RICL-VLA with finetuning is235

significantly better than the base VLA with finetuning (at almost double the aggregate performance).236
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(a) Task: "pick up the poke ball and put it in the tray"

(b) Task: "move the idli plate to the right"

(c) Task: "open the door of the bottom shelf"

Figure 5: Qualitative visualization of the reactivity and robustness of RICL-π0-FAST-DROID-finetuned on 20
task-specific demonstrations in a dynamic test rollout. In the above, a human randomly perturbs and displaces
the primary object during the test rollout. Additional results can be found in Figure 9 in Appendix D.

But we also observe comparable performance in complete task success rate, in aggregate, between237

the RICL-VLA (at 31.25%), which only uses RAG and ICL, and the base VLA with finetuning on the238

target task data (at 31.67%).239

We hypothesize that further finetuning our VLA is significantly better than doing so with the base240

VLA simply because our VLA can use all of its capacity to focus on interpolating amongst the241

retrieved images, states, and actions to predict a new action and does not have to memorize any data.242

This is in line with the observed parameter-efficiency & performance advantages of RAG LLMs [27].243

We qualitatively demonstrate the reactivity and robustness of RICL-π0-FAST-DROID by randomly244

perturbing and displacing objects during a test rollout as shown in Figure 5 and Figure 9.245

Ablating the number of retrieval/finetuning demonstrations: We plot the ablation results, ablating246

the number of demonstrations used in the retrieval buffer or for finetuning, for idliplate in the247

bottom right of Figure 1. We found that too few demonstrations (such as 5) results in RICL-π0-248

FAST-DROID starting to behave like π0-FAST-DROID to the extent where in one test rollout, it249

too moves the apple instead of the idli plate. This demonstrates the requirement for atleast 10250

demonstrations. Also, from this figure, we conclude that more retrieval demonstrations help RICL-251

π0-FAST-DROID improve, towards catching up with π0-FAST-DROID-finetuned. We also see that252

RICL-π0-FAST-DROID-finetuned is significantly better than π0-FAST-DROID-finetuned at every253

number of demonstrations.254

No loss-of-capabilities results: One might wonder: does RICL post-training come at the cost of255

losing the ability in the base VLA to perform without any retrieval data? To evaluate this, we test256

RICL-π0-FAST-DROID with randomly chosen priming demonstration in the retrieval buffer, rather257

than any meaningful task-specific demonstrations, on three tasks: "move the can to the tray", "pick258

up the marker and put it in the tray", and "place the apple next to the can". It obtains an 80% success259

rate, just like π0-FAST-DROID, demonstrating that RICL has not led to any loss of capabilities.260

7 Conclusions and Future Work261

We have demonstrated how RICL can be used to convert a VLA to a RICL-VLA that can use its262

context to adapt to completely new tasks, including unseen objects and novel motions, with just RAG263

and ICL. We found the RICL-VLA to even have comparable performance, in aggregate, with the base264

VLA finetuned on target task data. We have also demonstrated a significant boost in performance265

when a RICL-VLA is further finetuned on task-specific demonstrations. In future work, we believe266

that scaling up RICL in both the number of priming demonstrations and parameter size will further267

boost the performance of the in-context learning capable RICL-VLA.268
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8 Limitations269

We find that RICL does not typically enable learning any tasks that are too far beyond those that the270

base VLA can perform. This is why in this paper we primarily focus on pick and place tasks, the271

primary strength of the π0 VLAs used in this work. Further, while RICL-VLAs, unlike vanilla VLAs,272

can adapt to new tasks in-context, they can still benefit from improved performance. We believe that273

scaling up RICL in both the number of priming demonstrations/tasks and number of parameters can274

help with this issue in future work. Another limitation of RICL-VLAs remains their need for a few275

teleoperated demonstrations. Collecting these demonstrations for every new task across settings is not276

scalable. We believe that videos of human demonstrations (such as in [20]) can help bridge this gap.277

In our experiments, RICL-π0-FAST-DROID very easily removes the issue of language grounding for278

new tasks and motions but struggles with generalizing to significantly novel motions such as playing279

a forehand with a tennis racket. We believe future work including more diverse motions, rather than280

just pick and place, in the RICL dataset can fix this issue.281
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Appendix383

A Additional Related Work384

We discuss some other relevant work below.385

Retrieval in robotics: Recent work on retrieval in robot learning has created surprisingly adaptive386

and reliable policies [28, 29, 30, 31]. Early work in VINN [29] and recent work in MCNN [28]387

demonstrates the capabilities of retrieval based on image embeddings to improve behavior cloning388

policies. Recent work in behavior [31] and flow retrieval [30] demonstrate the ability of retrieval to389

augment task-specific data with a subset of offline data to further improve behavior cloning policies.390

While RICL builds on the former use of retrieval, we believe future work that includes the latter use391

of retrieval could further improve RICL-VLAs that are finetuned on task-specific demonstrations.392

B Additional Background Information393

We provide additional background information below.394

π0-FAST: It was created by finetuning the PaliGemma Vision-Language model (VLM) [32] on a395

(unknown but) large number of robot trajectories from different embodiments. The PaliGemma VLM396

is a combination of a SigLIP image encoder [33] and the 3B parameters Gemma large language397

model (LLM) [34]. In particular, it differentiates itself from the similar π0 diffusion-based VLA [2]398

with the use of the FAST tokenizer [1] to bring action tokens into the text token space for simple399

autoregressive prediction.400

π0-FAST-DROID: π0-FAST-DROID was created by finetuning π0 − FAST on the DROID dataset401

[25]. The DROID dataset was collected with the Franka DROID platform–which consists of a402

Franka arm on a movable platform with cameras on the left, right, and wrist–in-the-wild, across403

universities and scenes and with a large variety of objects. Each episode in the DROID dataset404

also has proprioceptive states, actions, and language annotations. In this work, we use the DROID405

platform (see Figures 3 and 2) for all results and hence, we will refer to this model frequently in the406

rest of the paper.407

REGENT [12], as discussed above, trains a transformer based multi-task policy on sequences of408

query and retrieved state-action pairs, from scratch, on 145 simulated robotics tasks and games. Given409

a few demonstrations in a held out simulated environment or game, REGENT retrieves state-action410

pairs from these demonstrations, throws it into its context, and plays the held out game.411

C Additional Info on Franka DROID Setup, RICL, and412

RICL-π0-FAST-DROID413

Exact list of tasks for RICL: We collect 20 demonstrations in each of the following 20 tasks (for a414

total of about 400 demonstrations):415

• 5x of "move <object> to the right" where object in [apple, orange, strawberry, the coffee416

pod, the cup],417

• 5x of “move <object> to the left” where object in [box, cup, duck, pan, pot],418

• 6x of “pick up <object> and put it in the bowl” where object in [the block, the cloth, the419

grapes on the waffle, the orange, the pineapple, the watermelon slice],420

• 1x of “pour the contents of the mug into the bowl”421

• 1x of “pick up the spoon in the bowl and put it in the other bowl”422

• 1x of “put the cable in the bowl”423

• 1x of “move the watermelon slice from one bowl to the other bowl”424
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Figure 6: [LEFT] Objects used during RICL, either as the primary object in the task or a distractor, to create
RICL-π0-FAST-DROID. [RIGHT] Unseen objects and depictions of novel motions in red arrows. Unseen tasks
also include distractors from the objects used during training.

Figure 7: Overview of RICL.

the pictures of these objects and distractors used can be seen in Figure 6. We also depict the unseen425

objects and novel motions in the same Figure. We note that we collect data at an action frequency of426

15 Hz.427

Observation and action space: The proprioceptive observation consists of 7 joint angle and gripper428

position. The action chunks are of shape (15, 8) where 15 corresponds to the prediction horizon429

(which we empirically found to have better performance than 10). Each action has 7 joint velocities430

and 1 gripper position. All images are resized with padding to 224×224.431

More details and key hyperparameters for RICL on priming demonstrations to create RICL-432

π0-FAST-DROID: We use four retrieved groups in our context and set λ = 10. For all other433

hyperparameters we build on top of the openpi repository2 and make the following key changes:434

using action chunks of 15 steps, training for three epochs, with a CosineDecaySchedule with 300435

warmup steps, 2.5e-5 peak learning rate, 3000 decay steps, and 2.5e-6 decay learning rate. We also436

use a batch size of 16 and two A100 GPUs. Our detailed codebase can be found in our website.437

Key hyperparameters for further finetuning RICL-π0-FAST-DROID on each task’s 20 demon-438

strations: We use a recipe similar to RICL but only finetune for a 1000 steps, and with the same439

learning rate scheduler but only for 1000 decay steps with 50 warmup steps.440

Key hyperparameters for further π0 finetuning on each task’s 20 demonstrations: We use the441

same number of train setps, decay steps and warmup steps in the optimizer as above but otherwise442

use the recommended pi0 fionetuning recipe in the openpi repository.443

Key hyperparameters at deployment: For RICL-π0-FAST-DROID, we execute 3 of the predicted444

15 actions in the action chunk until a gripping action is predicted in the last action of an action445

2 https://github.com/Physical-Intelligence/openpi
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(a) Task: "move the idli plate to the right". π0-FAST-DROID [L] moves the apple sitting on the plate (language grounding issue). RICL-π0-
FAST-DROID [R] moves the unseen object (idli plate) with depressions that require an unfamiliar grasp, only with RAG and ICL. Further, it
does so with elicited latent actions not in the retrieval data (see Section 6).

(b) Task: "move the squeegee to the right and try to drag it". π0-FAST-DROID [L] moves the distractor (duck) instead (language grounding
issue). In other rollouts, it cannot figure out the grasp or the motion (adaptation issue). RICL-π0-FAST-DROID [R] moves the unseen object
(squeegee) in a novel motion of partly lifting and partly dragging, only with RAG and ICL

Figure 8: Additional qualitative comparisons between π0-FAST-DROID [L] and RICL-π0-FAST-DROID [R],
with 20 task specific demonstrations for RAG and ICL, on new tasks, including novel objects, motions, and
scenes.

(a) Task: "move the squeegee to the right and try to drag it"

(b) Task: "pick up the bagel and put it in the toaster"

(c) Task: "push the lever on the toaster"

Figure 9: Additional qualitative visualizations of the reactivity and robustness of RICL-π0-FAST-DROID-
finetuned on 20 task-specific demonstrations in a dynamic test rollout. In the above, a human randomly perturbs
and displaces the primary object during the test rollout.

chunk, at which point we switch to using 8 of the predicted 15 actions in an action chunk. Similarly,446

for RICL-π0-FAST-DROID-finetuned, we execute 3 of the predicted 15 until a gripping action is447

predicted, at which point we switch to using 5 of the predicted 15.448

D Additional Results449

We provide additional qualitative comparisons between π0-FAST-DROID and RICL-π0-FAST-450

DROID in Figure 8. We also provide additional qualitative visualizations of the reactivity and451

robustness of RICL-π0-FAST-DROID-Finetuned in Figure 9.452

Understanding the quality of retrieval (and hence the quality of the context): To understand the453

quality of retrieval, we depict retrieved top images and their corresponding side and wrist images454

for key states in Figure 10 for the poke ball task. We find that our simple retrieval mechanism can455

find similar states with close initial positions and RICL-π0-FAST-DROID interpolates amongst these456

similar states and actions to predict a suitable action.457
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(a) First state of the test rollout

(b) An intermediate state of the test rollout when the Franka arm starts to grasp the pokeball

(c) Last state of the test rollout at which an action chunk was predicted

Figure 10: Visualization of Query and Retrieved images at three states during a REGENT-π0-FAST-DROID test
rollout on the "pick up the poke ball and put it in the tray" task.
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